
Process automation
The OPC standard

BS UNI studies, Fall semester 2024/2025

Octavian M. Machidon

octavian.machidon@fri.uni-lj.si

mailto:octavian.machidon@fri.uni-lj.si

Introduction

• Standard OPC
• Previously: Object Linking and Embedding for Process Control (OPC Classic)
• Today: Open Platform Communication (OPC UA)

• The OPC standard ensures interoperability for secure and reliable
data exchange in industrial automation. It is platform-independent
and allows data flow between devices from different manufacturers.

• OPC Standard represents the most significant improvement in
automation since the IEC 61131 standard (standardized programming
languages).

• The development and maintenance of the standard is the
responsibility of the OPC Foundation.

https://opcfoundation.org/

Introduction (cont.)

• Communication Model:
• Client – Server
• Publish - Subscribe (PubSub) in version 1.04

• OPC Server
• Device specifics are hidden behind the OPC server, which:

• Operates on the same or another device;
• Is prepared by manufacturers of process devices or independent software companies.

• An OPC server can simultaneously manage multiple devices of the same type.
• Multiple OPC servers can run at the same time.

• OPC Client
• Reading and writing process data.
• Reading and acknowledging alarms.
• Event monitoring.
• Retrieving data from historical databases based on various criteria.

Introduction (cont.)

Benefits for the User

• Transparent access to relevant information:
• Variables, data types, function blocks, structures, etc.

• Independent of the system and network.

• Reduces integration time:
• Controllers, HMI, SCADA, ERP, etc.

Introduction (cont.)

• The standard provides a programming interface (objects and methods) for servers and
clients.

• The standard does not cover the connection between servers and automation devices.

OPC server X

Program

OPC server
simulator

OPC server Y

Interfaces
provided by the
OPC standard

node

servers

PLC X PLC Y

Field Buses
(not covered by the
standard)

Industrial Ethernet
(not covered by the
standard)

Measuring and execution elements

clients

Introduction (cont.)

Without the OPC Standard

• Every higher-level control system
has a unique interface to access
device drivers.

PLK ABB PLK Téléméchanique PLK Siemens

MMS driver
XWAY driver

Profinet driver

SCADA Database

Introduction (cont.)

• Standard OPC

PLK ABB PLK Télémécanique PLK Siemens

OPC server
ABB

OPC server
Schneider

OPC server
Siemens

Application software does
not require drivers for every
type of PLC

MMS XWAY ProfiNet

Drivers still exist, but they
are provided by the device
manufacturers

SCADA Database

Development

A brief history of the standard's development:
• 1995: Automation equipment manufacturers (Fischer-Rosemount, Intellution, Opto 22,

Rockwell Software) form a group to develop the standard.
• 1996: The first version of OPC is released, now known as OPC Classic, based on Microsoft's

technologies: Windows + (D)COM.
• 2004: Microsoft releases Windows XP Service Pack 2, which significantly restricts the DCOM

protocol and consequently limits the OPC standard.
• 2006: The first version of the new architecture OPC UA (Unified Architecture) is released,

emphasizing technology independence (OS, transport protocol, computing architecture) and
security (certificates).

• Recently: In November 2022, the OPC UA Field eXchange (UAFX) specification is released,
expanding the standard's use to the field-level domain of PLCs (presentation video).

Technological building blocks of the OPC Classic standard (still quite prevalent):
• DA, AE, HDA, Batch, DX, XML-DA

OPC Classic - Components

OPC-DA (Data Access) for accessing data:

• Process variables (points) define the
state of the system.

• Variables can be sent:
• On change.
• On demand.
• At specific time intervals.

• The role of OPC-DA is to collect
process variables.

• OPC-DA clients are primarily used for:
• Visualization.
• Soft control.
• Integration with higher-level control

systems.

Note: OPC Classic is outdated/obsolete/historical.

OPC Classic – Components (cont.)

OPC-AE (Alarms and Events) for alarms
and events:

• Alarms are abnormal system conditions
requiring operator attention.
• Example: Low oil pressure.

• Events are changes in the process
recorded in logs.
• Example: Start of production.

• OPC-AE defines:
• Collection of alarms and events (event

timestamp).
• Conditions under which they are sent

(filtering, priorities).
• Acknowledgment of alarms.
• Linking alarms with textual descriptions.

• OPC-AE clients are mostly used for alarm
and event logs. Note: OPC Classic is outdated/obsolete/historical.

OPC Classic – Components (cont.)

OPC-HDA (Historical Data Access) for
historical records:

• Historical records represent the state
of the system and events, stored in
logs for potential later analysis.
• Example: Process variables, operator

actions, recorded alarms.

• OPC-HDA defines:
• How to access historical log records.
• Filtering procedures.
• Aggregation (averages, maximums,

etc.).

• OPC-HDA clients are primarily used
for:
• Displaying trends.
• Viewing historical records.

Note: OPC Classic is outdated/obsolete/historical.

OPC Classic – Components (cont.)

OPC-Batch for supporting batch production:

• Built on IEC 61512-1.

• Defines interfaces for data exchange between devices:
• Equipment states.
• Current operating conditions.
• Historical records.
• Recipe contents.

OPC-DX (Data eXchange) for data exchange:

• Standardized interfaces for data exchange between OPC servers.

OPC-XML (eXtended Markup Language) for data exchange (predecessor of OPC UA):

• Data exchange with higher-level systems.

• Adaptation of the standard to Microsoft’s .NET framework.

• Usable across various operating systems.

• Specifies the message format for server-client communication using protocols:
• XML (eXtended Markup Language).
• SOAP (Simple Object Access Protocol).
• WSDL (Web Service Definition Language).

Note: OPC Classic is outdated/obsolete/historical.

OPC UA

Extends the widely used OPC Classic:
• Enables the connection of PLCs to ERP systems.
• Supports data acquisition, information modeling, and

communication.

Utilization of standard technologies:
• Web services (XML, SOAP, WS).
• Simplified configuration and maintenance.
• Increased system visibility (access from multiple

device types).
• Broader application areas.
• Reliability.
• Security.
• Speed (OPC binary encoding on the TCP protocol).
• Platform independence (computer architecture,

operating system, communication protocol).

OPC UA (cont.)

Scalability:

• Profiles:
• Independent set of functionalities:

• Methods, data models, security.

• The server announces what it supports, and the client can verify the required
functionalities.

• Example of a profile: OPC Data Access.

Certificates:

• Certificates are used for secure mutual identification.

• Certificates for servers, clients, and users.

• A list of trusted certificates on each device.

OPC UA (cont.)

Unification of Interfaces

Architecture oriented toward services
(Service Oriented Architecture - SOA).

Unified Set of Services

• UA includes OPC Classic functionalities
but uses only a single set of services.

• Services include:
• Querying,
• Reading,
• Writing,
• Subscription, etc.

• Named connections between nodes.

Communication

OPC Server and OPC Client on the same computer:
• Servers and clients run as parallel processes.

• The OPC standard provides an interface between the server and client in the
form of objects and methods.

OPC server

Application 1
(OPC client)

OPC server OPC server

Application 2
(OPC client)

devices devices devicesdevices

host

Communication (cont.)

OPC server

Application
(OPC client)

Bus

OPC server

Master

Bus

PLC

Slave

Bus

PLC

Slave

Direct access

Fieldbus

Aplikacija
(odjemalec OPC)

Fieldbus

The OPC server is active all the
time if at least one client is present

Servers and

clients run as

parallel

processes

Direct Access and Access through a Local Server

Communication (cont.)

Access to an OPC server on another
computer:

• Problem for OPC Classic: Firewalls.

• Solution: OPC UA. TCP/IP

DCOM

TCP/IP

OPC server

DCOM

TCP/IP

OPC
server

DCOM

Master

fieldbus

DCOM

Application
(OPC client)

Communication (cont.)

• OPC servers support multiple clients on the same or different
computers.

OPC server
“Y”

Application 3

Bus “Y” Bus “Z”

Drivers

OPC server
“Z”

OPC server
”simulator”

DisplayApplication 2

OPC server
“X”

TCP/IPTCP/IP

ERP system

Ethernet

Application 1

OPC UA: Data Access Specification

PLC

OPC-UA client

(visualization)

OPC-UA server

Field devices

OPC-UA client

(performance
monitoring)

Interface

according to

the OPC UA

standard

System - sensors

The OPC UA server is
configured using
development tools for
controllers and SCADA
systems

Points

Variables defined in
the PLC are mirrored
in the OPC UA
server

PLC

Fieldbus

OPC UA: Data Access Specification (cont.)

Bus

Development environment

OPC1

server

MW103 MotorSpeed

MW105 Temperature

… ….

Symbols

Transfer

of the

symbolic

table

Read point:
OPC1.Injector.Program2!
MotorSpeed

Request to read MW103 Response MW103 =112

Value: 112

Reactor_1.Program2

Code

Example 1: Direct Access
to a Variable

OPC UA: Data Access Specification (cont.)

Example 2: Indirect access to a variable via a SCADA system

Bus

Development environment

Injector

MW103 MotorSpeed

MW105 Temperature

… ….

Symbols

Transfer of
symbolic
table

point: MotorSpeed
(MW103)

Request to read MW103 (not
synchronized with OPC)

Response MW103 =112

Reactor_1.Program2

Code

Address: MW103

OPC

client
OPC1

server

OPC1. Group1.
Folder1!
MotorSpeed

Value: 112

Data organization

• OPC Server is organized as a tree with roots, branches, and leaves.

• Branches can contain sub-branches and data points.
• The structure does not have to be strictly hierarchical.
• The structure is established during system configuration.

Points are fully qualified with a hierarchical name,
e.g., Process_Line_1.Controller_2!Level_2.

Point name

Data organization (cont.)

• Data is organized into nodes, forming a tree structure:
• The complete set of nodes on a server constitutes the address space.

• Nodes are typed:
• Each node has predefined attributes based on its type.
• These attributes can have dynamic values.

• Each node has a unique identifier:
• Can be a string, integer, or GUID (Globally Unique Identifier).
• The identifier must be unique within its namespace.
• Namespaces are defined with integers.

• The most general type of node is an object:
• Can contain variables.
• Can contain methods.
• Functions similarly to objects in object-oriented programming.

Server operations

• The client establishes a connection to the server:
• The server is specified with a URL, e.g., opc.tcp://localhost:4840/.

• Server discovery
• Browsing the server
• Reading and modifying variables
• Subscribing to variable changes and other events:

• No need to manually check when changes occur.
• If no changes are detected, the server still periodically reports:

• Values are not transmitted in this case.
• The interval is defined by the client.

• Method calls:
• Objects can have attached methods that the client can invoke.

Data types and properties

Each element has a defined data type:
• The data type of a point on the server can

be obtained by browsing the server
(special software tools, called browsers,
are used for this).

• It is essential to ensure that data types on
the server and the client are compatible.

Boolean,

Character,

Byte, (1 byte)

Word, (2 bytes)

Double Word, (4 bytes)

Short Integer (2 bytes)

Integer (4 bytes)

Long Integer

Long Unsigned Integer

Single Float (4 bytes)

Double Float (8 bytes)

Currency

Date

String

Array of …

Data types and properties (cont.)

Points on clients are represented with the following dynamic
properties:

• Value: Corresponds to previously mentioned data types.

• Quality: Indicates the validity of the record (e.g., OK, invalid, questionable).

• Timestamp: The time at which the value was transferred from the PLC to the
server.
• Time is provided in UTC (Universal Time Coordinated).

Behavior:
• When reading, all three properties (Value, Quality, Timestamp) are updated.

• When writing, only the Value property is used.

Programming

Reading and Writing:
• A new value overwrites the old value; there are no queues or historical records.

• The OPC server does not guarantee that different clients will see the same process
state.

Limitations:
• The OPC server does not ensure that all changes to objects are detected.

• If the refresh rate is too slow, some changes might be missed.

OPC client OPC client

OPC server

Programming (cont.)

Event-Driven Reading:
• A function is called every time an element in a group changes.

• The variable is identified using its address on the client, not its full name.

• For each point, the function provides its value, quality, and timestamp.

Behavior:
• The OPC client can call the function even when a value in any group changes

(Global Data Change).

• The application must determine which group and which point the changes
belong to.

Programming (cont.)

• Libraries:
• To ensure compliance with the OPC standard, OPC Foundation offers libraries

on their website required for accessing OPC servers.
• Code in C and Java is no longer maintained.
• .NET Core: https://github.com/OPCFoundation/UA-.NETStandard

• Challenges:
• Server manufacturers do not always implement all functionalities, which can result in

unexpected errors.

• Beckhoff TwinCAT:
• Resources:

• Infosys: TF6100
• Presentation and Best Practices

https://github.com/OPCFoundation/UA-.NETStandard
https://infosys.beckhoff.com/content/1033/tf6100_tc3_opcua/index.html?id=8440997285323845337
https://www.youtube.com/watch?v=7Q3eb2ZqSMY

Tools, resources

• OPC Foundation:
• https://opcfoundation.org/
• Standard specifications (members only)
• Servers, clients, browsers, simulators

• Python (FreeOpcUa):
• python-opcua (deprecated): https://github.com/FreeOpcUa/python-opcua
• Asynchronous API: https://github.com/FreeOpcUa/opcua-asyncio
• Client with GUI: https://github.com/FreeOpcUa/opcua-client-gui

• NodeJS:
• https://node-opcua.github.io/

• UA Expert:
• Fully functional client/browser
• https://www.unified-automation.com/products/development-tools/uaexpert.html

https://opcfoundation.org/
https://github.com/FreeOpcUa/python-opcua
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/FreeOpcUa/opcua-client-gui
https://node-opcua.github.io/
https://www.unified-automation.com/products/development-tools/uaexpert.html

Process automation
The OPC standard

BS UNI studies, Fall semester 2024/2025

Octavian M. Machidon

octavian.machidon@fri.uni-lj.si

mailto:octavian.machidon@fri.uni-lj.si

	Slide 1: Process automation The OPC standard
	Slide 2: Introduction
	Slide 3: Introduction (cont.)
	Slide 4: Introduction (cont.)
	Slide 5: Introduction (cont.)
	Slide 6: Introduction (cont.)
	Slide 7: Introduction (cont.)
	Slide 8: Development
	Slide 9: OPC Classic - Components
	Slide 10: OPC Classic – Components (cont.)
	Slide 11: OPC Classic – Components (cont.)
	Slide 12: OPC Classic – Components (cont.)
	Slide 13: OPC UA
	Slide 14: OPC UA (cont.)
	Slide 15: OPC UA (cont.)
	Slide 16: Communication
	Slide 17: Communication (cont.)
	Slide 18: Communication (cont.)
	Slide 19: Communication (cont.)
	Slide 20: OPC UA: Data Access Specification
	Slide 21: OPC UA: Data Access Specification (cont.)
	Slide 22: OPC UA: Data Access Specification (cont.)
	Slide 23: Data organization
	Slide 24: Data organization (cont.)
	Slide 25: Server operations
	Slide 26: Data types and properties
	Slide 27: Data types and properties (cont.)
	Slide 28: Programming
	Slide 29: Programming (cont.)
	Slide 30: Programming (cont.)
	Slide 31: Tools, resources
	Slide 32: Process automation The OPC standard

