Mathematical Modelling
Section outline
-
Pri Matematičnem modeliranju študenti (relativno) realne probleme rešujejo s pomočjo matematičnih modelov. Študenti se spoznajo s timskim delom in lahko sami, skupaj s kolegi v ekipi (in ob pomoči učiteljske ekipe) izpeljejo projekt od začetka do konca.
Predmet je razdeljen na tri glavna poglavja:
- Linearni modeli: sistemi linearnih enačb, posplošeni inverzi matrik
- Nelinearni modeli: vektorske funkcije vektorske spremenljivke, sistemi nelienarnih enačb, krivulje in ploskve
- Dinamični modeli: diferencialne enačbe in dinamični sistemi
During the course of Mathematical Modelling the students will be solving (relatively) real life problems with the help of mathematical models. Students will be introduced to team work and will be given the opportunity to carry out a complete relatively complex project from the beginning to the very end together with their colleagues (and with the help of the teaching team) .
The course consists of three main topics:
- Linear models: systems of linear equations, generalized inverses of matrices
- Nonlinear models: vector functions of a vector variable, nonlinear systems, curves and surfaces
- Dynamic models: differential equations and dynamical systems
-
Uploaded 15/03/24, 12:51
-
Uploaded 15/03/24, 12:50
-
Uploaded 11/04/24, 17:02
-
Uploaded 11/04/24, 17:03
-
Uploaded 11/04/24, 17:03
-
Uploaded 11/04/24, 17:04
-
Lectures: Introduction, a linear matematical model, some basics of linear algebra.
-
Uploaded 19/02/24, 07:20
-
Uploaded 19/02/24, 07:21
-
-
Lectures: Generalized matrix pseudoinverses and their use in solving linear systems, the Moore-Penrose pseudoinverse.
-
Uploaded 27/02/24, 18:35
-
Uploaded 27/02/24, 18:35
-
Uploaded 29/03/17, 12:34
-
-
Lecture: SVD and MP inverse computation, underdetermined systems with many and overdetermined systems with no solutions.
Extra lecture (instead of the next week's one): Vector and matrix norm, PCA, introduction into nonlinear models (see the updated lecture notes) and this pdf.-
Uploaded 1/03/24, 12:10
-
Uploaded 1/03/24, 12:10
-
-
No lectures this week.
-
Uploaded 10/03/24, 20:54
-
Lectures: Vector functions. Derivative/Jacobian matrix. Linear approximation. Tangent method. Newton method. Gauss-Newton method.
-
Uploaded 18/03/24, 05:49
-
Modified 17/03/20, 16:38
-
Modified 18/03/20, 07:24
-
Lecture: Rate of convergence of Newton's method. Newton's optimization. Gradient descent. Broyden's method.
-
Uploaded 24/03/24, 19:54
-
Podroben opis reševanja 1. naloge iz tedna 5 in 1. naloge iz tedna 6.
Uploaded 26/03/18, 14:55
-
Lectures: Curves - different parametrizations, arc length. (Pages up to 115 in the notes)
-
Uploaded 29/03/24, 12:56
-
Uploaded 17/04/20, 09:46
-
Lectures: Curves - different parametrizations, polar coordinates, arc length, area bounded by the curve, natural parametrization, curvature of parametric curves, plotting plane curves.
-
Modified 7/04/24, 21:22
-
Lectures: Parametrization of surfaces. Surface of revolution. Tangent plane. Differential equations: introduction.
-
Uploaded 14/04/24, 21:57
-
Uploaded 24/04/24, 12:56
-
Lectures: Differential equations - Applications, separation of variables, first order linear ODE, variation of constants,
-
Uploaded 22/04/24, 12:29
-
Uploaded 22/04/24, 12:30
-
-
Lectures: Orthogonal trajectories. Homogeneous DE, direction field, Euler's method, Runge-Kutta methods. DOPRI5.
-
Uploaded 5/05/24, 18:26
-
Uploaded 5/05/24, 18:27
-
-
Lectures: Transforming an ODE of higher order into a system of first order ODE. Systems of differential equations. Autonomous linear systems. Numerical methods for systems.
-
Uploaded 10/05/24, 11:34
-
Uploaded 10/05/24, 11:34
-
-
Lectures: Phase portraits, linearization of a nonlinear system, autonomous linear DE of higher order.
-
Uploaded 19/05/24, 21:40
-
Uploaded 19/05/24, 21:41
-
-
Lectures: Wronskian determinant, nonhomogeneous second order DEs.
-
Uploaded 27/05/24, 21:58
-
Uploaded 28/05/24, 00:46
-
Uploaded 27/05/24, 21:59
-
Uploaded 28/05/24, 00:45
-