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Stability and applications



Inception



Edelsbrunner’s motivation:  
Protein docking

Irina Hashmi and Amarda Shehu: HopDock: A probabilistic search algorithm for decoy sampling in protein-protein docking
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Figure 1. An example of a footprint detection. The upper left
side represents the homotopy type of the Vietoris-Rips filtration
of a circle (i.e., odd-dimensional spheres) equipped with a geo-
desic metric by Theorem 2.1. The black shape on the right is a
two-dimensional torus and below it is an excerpt from its barcode
as retrieved from our results. Geodesic circle a is a member of
the shortest homology base and hence generates odd-dimensional
spheres and bars by Theorem 4.5. Geodesic circle c is not a mem-
ber of such a base, hence it generates higher odd-dimensional bars
along with a 2-dimensional bar by Theorem 7.1.

(1) By results of [27], the critical values of the persistent fundamental group
{⇡1(Rips(X, •), r)}r>0, which are in general incomputable due to the word
problem in groups, correspond to geodesic circles. Results of this paper
indicate that candidates for these critical values can in some cases be ex-
tracted from higher dimensional homology.

(2) The collection of lengths of closed geodesics features prominently in dif-
ferential geometry under the name of the length spectrum (for a modern
treatment see [23, Section 7.2] or [19]). It is closely related to the Lapla-
cian spectrum and in some cases, even to the volume of the manifold. The
results of this paper detect a part of this spectrum arising from geodesic
circles. By extending our method we hope establish a result describing how
much of the length spectrum is encoded in the persistent homology.

(3) As was already mentioned in [27], the setting of geodesic spaces provides a
convenient venue for topological data analysis via persistent homology for
a number of reasons: filtrations are smaller, they seem to be more stable
[28] and seem to contain less noise (see example of Section 9), there seems
to be an inherent structure to the corresponding persistence diagram, etc.
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Counts holes: 

β0 = 0; β1 = 2; β2 = 1
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Describes evolution of holes:
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TDA pipeline
Space or 

pointcloud Filtration

Rips complex of a metric space  at : X r > 0
σ ⊂ X ∈ Rips(X, r) ⇔ diam(σ) ≤ r
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What to expect from 
persistence diagrams?



What to expect from a PD?
Expectations: Given a space , PH 
via Rips or Cech complexes looks as 
follows:

• Initially homology of  at certain 
intermediate scales

• Only one 0-bar at infinity 
(contractibility)

• Mysterious homology in between.

X

X
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What to expect from a PD?
Expectations: Given a space  and a fairly good 
approximation , PH via Rips or Cech complexes looks as 
follows:
• Initially a lot of 0-bars (discrete set) for very small scales
• Homology of  at certain intermediate scales
• Only one 0-bar at infinity (contractibility)
• Mysterious homology in between.
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Stability

Generated using Ripserer.jl by Matija Čufar
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Examples



Examples of  PH: S2
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Examples of  PH: S3
3 S3(1)
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Persistence diagrams

Xia, Wei: A review of geometric, topological and graph theory 
apparatuses for the modeling and analysis of biomolecular data

Fluoren  C60



Effects of  density
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Figure 9. PD described in Section 9.

(3) Note that the long 2-dimensional bar above is born slightly earlier than
the 3-dimensional bar. This is always the case, as generating the two-
dimensional bar only requires a 2-dimensional portion of the generator of
the 3-dimensional bar, that spans the sample of ↵.

(4) A pairing of a 3-dimensional bar with 2-dimensional bar indicates that ↵ is
contractible in X.

(5) We speculate the other short 3-dimensional bars are induced by other ge-
odesic circles (i.e., equator and its rotations) in X. We will delve deeper
into them in our future work.

Note that, except for small values of r, there is essentially no noise in the PD.
We are able to interpret almost all of the bars. Initial 1-dimensional bars are
unavoidable as we always start with a finite sample (discrete subset). They shorten
as the density of our sample increases. The only other unmentioned bar is the short
2-dimensional bar appearing at about the same time as the long 2-dimensional
bar. It can be explained by the e↵ect of discretisation and the structure of the
3-dimensional bar born at about the same time.

During our experimentation we have generated several instances of the PD using
the mentioned procedure. The obtained diagrams are qualitatively the same in all
instances (and aligned with the interpretation above) with the only exception being
the short isolated 3-dimensional bar, which did not appear in all attempts due to
its short length.
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Critical simplex of  a 2-dim class



1-dimensional PH of  geodesic spaces
 a geodesic metric space. 1-dim PH looks as follows:

• For each element  of the shortest homology base we 
obtain a bar.

• In Rips filtration these bars terminate at .
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1-dimensional PH of  geodesic spaces



1-dimensional PH of  geodesic spaces



1-dimensional PH of  geodesic spaces



1-dimensional PH of  geodesic spaces



Denoising a function

1

An application of sublevel 0-dimensional persistence.



Applications to data



Sensor coverage

V. De Silva and R. Ghrist, Homological sensor networks.

Coordinate free sensors. 
Sensors only detect neighbors in broadcast radius .

Sensors cover ball of covering radius .  
rB

rc > rb/ 3



Sensor coverage

V. De Silva and R. Ghrist, Homological sensor networks.

If sensors  cover the boundary (fence), then they cover the 
interior if 

S
H1(Rips(S, r)) = 0.



Sensor coverage

V. De Silva and R. Ghrist, Homological sensor networks.

(Persistent) homological criteria also exist for:
• Coverage with dynamic sensor network 
• Intruder detection (weaker than coverage).



Directional scanning
•  be “nice”, compact.
• “Scan”  along each direction.
• For each  obtain the 

sublevel diagram PD .
• These scans uniquely 

determine 
• Map  is called 

persistent transform.
• Euler transform maps a 

direction to Euler curve…it is 
also injective.

K ⊂ ℝ2

K
v ∈ S2

(K, v)

K .
v ↦ PD(K, v)

Katharine Turner, Sayan Mukherjee, Doug M Boyer: Persistent Homology Transform for Modeling Shapes and Surfaces



Classification of  leaves

Li M, An H, Angelovici R, et al. Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf 
Morphospace.



Preprocessing of  medical data

Fan Wang, Huidong Liu, Dimitris Samaras, Chao Chen: A topological biomarker for predicting treatment response in breast cancer



Derived curves for medical data

Fan Wang, Hubert Wagner, Chao Chen: GPU Computation of the Euler Characteristic Curve for Imaging Data



Topology of  cosmic web

Pranav et al: Unexpected topology of the temperature fluctuations in the cosmic microwave background 



Topology of  artery trees

Bendich et al: Persistent Homology Analysis of Brain Artery Trees

Persistent 
homology data 
objects from a 

24-year-old.

Persistent 
homology data 
objects from a 

68-year-old.

‘‘Novel approaches to the statistical analysis, through various summaries of the 
persistence diagrams, lead to heightened correlations with covariates such as age and sex, 

relative to earlier analyses of this data set.’’



Persistence in material science

Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, Yasumasa Nishiura: Hierarchical 
structures of amorphous solids characterized by persistent homology

Silica (a mineral in earth) simulated



Persistence in material science

Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, Yasumasa Nishiura: Hierarchical 
structures of amorphous solids characterized by persistent homology

Silica (a mineral in earth) simulated

-dim PD of 
sample 

obtained from 
MDI 

simulation (on 
right)

1



Persistence in material science
“crystallization mechanism of three-dimensional granular packings of frictional spheres is studied at the grain-

scale using Xray tomography…three-dimensional images of granular packings with several packing ratio are 
obtained by using XCT”

M. Saadatfar, H. Takeuchi, V. Robins, N. Francois, Y. Hiraoka, Pore configuration landscape of granular crystallization

-diagrams2D
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Connecting with statistics



Into a vector space

A Persistent Homology Approach to Heart Rate Variability Analysis With an Application to Sleep-Wake 
Classification



Topological signature

Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable topological signatures for points on 3d shapes.



Persistence landscape

P. Bubenik. Statistical topological data analysis using persistence landscapes. 



Persistence landscape: means

P. Bubenik. Statistical topological data analysis using persistence landscapes. 



Persistence landscape: means

P. Bubenik. Statistical topological data analysis using persistence landscapes. 



Multi-scale kernel

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological machine learning.



Persistence images

H. Adams et. al: Persistence images: A stable vector representation of persistent homology

Further analysis and examples: Danielle Barnes, Luis Polanco and Jose A. Perea: A Comparative Study of Machine 
Learning Methods for Persistence Diagrams



Generalizations



Zig-Zag persistent homology

,! -  -

K1 K2 K3 K4

K1 K2 K3 K4

Instead of “linear” filtration with inclusions, we have a sequence 
of complexes with inclusions (or maps) in some direction

They still deompose as bars.

G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions.



Multi-parameter persistence

K1,1 ,! K2,1 ,! · · · ,!K3,1 ,! Km,1

,! ,! ,! ,!

K1,2 ,! K2,2 ,! · · · ,!K3,2 ,! Km,2

,! ,! ,! ,!

...
...

...
...

,! ,! ,! ,!

K1,m ,! K2,m ,! · · · ,!K3,m ,! Km,m

Decomposition problematic, other summaries are used.



Other settings
• Stochastic topology
• Sliding window (persistence for time series)
• …


